Back to Search Start Over

On Thermal and Electrodynamic Aspects of the Superconductive Transition Process

Authors :
J. E. Hirsch
Source :
Materials, Vol 17, Iss 1, p 254 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

In a classic paper of 1960, W. H. Cherry and J. I. Gittleman discussed various thermal and electrodynamic aspects of the superconductive transition process relevant to practical applications. In a section of the paper that has remained unnoticed, they proposed a physical model for the Meissner effect. Earlier in 1940–1943, in work that has also remained unnoticed, K. M. Koch had introduced related physical ideas to explain the Meissner effect. Still earlier in 1937, J. C. Slater proposed a model to explain the perfect diamagnetism of superconductors. None of these ideas are part of the conventional London-BCS understanding of superconductivity, yet I will argue that they are essential to understand the Meissner effect, the most fundamental property of superconductors. The unconventional theory of hole superconductivity unifies and extends these ideas. A key missing element in the conventional theory as well as in these early theories is electron-hole asymmetry. A proper understanding of the Meissner effect may help with practical applications of superconductors, as well as to find new superconducting materials with desirable properties.

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.318f9d56513744a5a2ebee146949c9cc
Document Type :
article
Full Text :
https://doi.org/10.3390/ma17010254