Back to Search Start Over

Summation Laws in Control of Biochemical Systems

Authors :
Hans V. Westerhoff
Source :
Mathematics, Vol 11, Iss 11, p 2473 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Dynamic variables in the non-equilibrium systems of life are determined by catalytic activities. These relate to the expression of the genome. The extent to which such a variable depends on the catalytic activity defined by a gene has become more and more important in view of the possibilities to modulate gene expression or intervene with enzyme function through the use of medicinal drugs. With all the complexity of cellular systems biology, there are still some very simple principles that guide the control of variables such as fluxes, concentrations, and half-times. Using time-unit invariance we here derive a multitude of laws governing the sums of the control coefficients that quantify the control of multiple variables by all the catalytic activities. We show that the sum of the control coefficients of any dynamic variable over all catalytic activities is determined by the control of the same property by time. When the variable is at a maximum, minimum or steady, this limits the sums to simple integers, such as 0, −1, 1, and −2, depending on the variable under consideration. Some of the implications for biological control are discussed as is the dependence of these results on the precise definition of control.

Details

Language :
English
ISSN :
22277390
Volume :
11
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.3241b46290a94f1c8ea99e76eddffd47
Document Type :
article
Full Text :
https://doi.org/10.3390/math11112473