Back to Search Start Over

Impact of Rubin Observatory Cadence Choices on Supernovae Photometric Classification

Authors :
Catarina S. Alves
Hiranya V. Peiris
Michelle Lochner
Jason D. McEwen
Richard Kessler
The LSST Dark Energy Science Collaboration
Source :
The Astrophysical Journal Supplement Series, Vol 265, Iss 2, p 43 (2023)
Publication Year :
2023
Publisher :
IOP Publishing, 2023.

Abstract

The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will discover an unprecedented number of supernovae (SNe), making spectroscopic classification for all the events infeasible. LSST will thus rely on photometric classification, whose accuracy depends on the not-yet-finalized LSST observing strategy. In this work, we analyze the impact of cadence choices on classification performance using simulated multiband light curves. First, we simulate SNe with an LSST baseline cadence, a nonrolling cadence, and a presto-color cadence, which observes each sky location three times per night instead of twice. Each simulated data set includes a spectroscopically confirmed training set, which we augment to be representative of the test set as part of the classification pipeline. Then we use the photometric transient classification library snmachine to build classifiers. We find that the active region of the rolling cadence used in the baseline observing strategy yields a 25% improvement in classification performance relative to the background region. This improvement in performance in the actively rolling region is also associated with an increase of up to a factor of 2.7 in the number of cosmologically useful Type Ia SNe relative to the background region. However, adding a third visit per night as implemented in presto-color degrades classification performance due to more irregularly sampled light curves. Overall, our results establish desiderata on the observing cadence related to classification of full SNe light curves, which in turn impacts photometric SNe cosmology with LSST.

Details

Language :
English
ISSN :
15384365 and 00670049
Volume :
265
Issue :
2
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal Supplement Series
Publication Type :
Academic Journal
Accession number :
edsdoj.3253eca4b3064a8cb74f333cdf8df351
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-4365/acbb09