Back to Search Start Over

Geographically varying relationships of COVID-19 mortality with different factors in India

Authors :
Asif Iqbal Middya
Sarbani Roy
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract COVID-19 is a global crisis where India is going to be one of the most heavily affected countries. The variability in the distribution of COVID-19-related health outcomes might be related to many underlying variables, including demographic, socioeconomic, or environmental pollution related factors. The global and local models can be utilized to explore such relations. In this study, ordinary least square (global) and geographically weighted regression (local) methods are employed to explore the geographical relationships between COVID-19 deaths and different driving factors. It is also investigated whether geographical heterogeneity exists in the relationships. More specifically, in this paper, the geographical pattern of COVID-19 deaths and its relationships with different potential driving factors in India are investigated and analysed. Here, better knowledge and insights into geographical targeting of intervention against the COVID-19 pandemic can be generated by investigating the heterogeneity of spatial relationships. The results show that the local method (geographically weighted regression) generates better performance ( $$R^{2}=0.97$$ R 2 = 0.97 ) with smaller Akaike Information Criterion (AICc $$=-66.42$$ = - 66.42 ) as compared to the global method (ordinary least square). The GWR method also comes up with lower spatial autocorrelation (Moran’s $$I=-0.0395$$ I = - 0.0395 and $$p < 0.01$$ p < 0.01 ) in the residuals. It is found that more than 86% of local $$R^{2}$$ R 2 values are larger than 0.60 and almost 68% of $$R^{2}$$ R 2 values are within the range 0.80–0.97. Moreover, some interesting local variations in the relationships are also found.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.32aa5106d710434f97ba19b214a11cbc
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-86987-5