Back to Search Start Over

Enhancement of Thermoelectric Performance for InTe by Selective Substitution and Grain Size Modulation

Authors :
Menghui Zhou
Juan Li
Guoying Dong
Shufang Gao
Jianghe Feng
Ruiheng Liu
Source :
Crystals, Vol 13, Iss 4, p 601 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The different masses, ionic radii, and chemical valences of the nonequivalent crystallographic sites of thermoelectric (TE) compounds provide an effective way to modulate the thermoelectric performance by selective substitution. In this work, the selective substitution of In+ by Pb for the binary InTe material monotonically reduces the carrier concentration, which is greatly beneficial to the mechanism investigation of serious grain boundary scattering (GBS). This is the first time this point has been mentioned with regard to InTe material. As a result, we found that GBS was dominated by the grain size when the carrier concentration was higher than 0.7 × 1019 cm−3 but was inversely governed by the carrier concentration when the carrier was situated at a lower density. In particular, the occupation of Pb on the targeted In+ site could further reduce the lattice thermal conductivity. Finally, In0.9999Pb0.0001Te achieved the improved power factor and average zT value, which could contribute to high-power generation below a medium temperature. This effect of increasing the carrier concentration on the suppression of GBS sheds light on the possibility of improving electron mobility by increasing the carrier concentration.

Details

Language :
English
ISSN :
20734352
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Crystals
Publication Type :
Academic Journal
Accession number :
edsdoj.33445084ced547bfbca84d09584499f8
Document Type :
article
Full Text :
https://doi.org/10.3390/cryst13040601