Back to Search Start Over

Mechanical design and analysis of a gripper for non-cooperative target capture in space

Authors :
Yili Zheng
Guannan Lei
Mingwei Zhang
Qianbo Che
Source :
Advances in Mechanical Engineering, Vol 10 (2018)
Publication Year :
2018
Publisher :
SAGE Publishing, 2018.

Abstract

Space grippers are the key devices for accomplishing space non-cooperative target capture, which has a great significance for satellite services and space debris removal. This article proposes a novel mechanical gripper device for the capture of aluminum honeycomb panels of non-cooperative satellites. The gripper was modeled and assembled in the three-dimensional modeling platform UGNX. The model was imported into the simulation software ADAMS. ADAMS is capable of analyzing the kinematic feasibility of the gripper model. Collision and penetrating power analysis of the mechanical claws into an aluminum honeycomb plate were carried out in LS-DYNA. Through non-vertical piercing experiment, the maximum approaching angle tolerance is 10°. The established rigid connection can withstand a destructive force greater than 1000 N. A prototype of the mechanical gripper is built. A ground test was carried out with this prototype, in which a test-platform simulated the space microgravity environment. The results certified that the prototype could reach the target at a relative speed of 0.5 m/s and then quickly complete the grabbing motion and establish a rigid connection. The experiment shows that this mechanical gripper can accomplish the task of repeatedly capturing the surface of non-cooperative space satellites.

Details

Language :
English
ISSN :
16878140
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Advances in Mechanical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.33552e4771e843109eb93663fab42432
Document Type :
article
Full Text :
https://doi.org/10.1177/1687814018810649