Back to Search Start Over

Live-cell dynamic sensing of Cd(2+) with a FRET-based indicator.

Authors :
Tai-Yu Chiu
Po-Hsun Chen
Cha-Ling Chang
De-Ming Yang
Source :
PLoS ONE, Vol 8, Iss 6, p e65853 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Cd(2+) causes damages to several human tissues. Although the toxicological and carcinogenetic mechanisms of Cd(2+) have been previously established, some basic questions on this toxicant remain unclear. In this study, we constructed Met-cad 1.57, a new fluorescent resonance energy transfer (FRET)-based Cd(2+) indicator, which contains a portion of a Cd(2+)-binding protein (CadR) obtained from Pseudomonas putida as the Cd(2+) sensing key. We produced a human embryonic kidney cell line HEK-MCD157 which stably expresses the Met-cad 1.57 for further investigations. Both fluorescence spectroscopy and FRET microscopic ratio imaging were used to monitor the Cd(2+) concentration within the living HEK-MCD157 cells. The dissociation constant of Met-cad 1.57 was approximately 271 nM. The function of Ca(2+) channels as a potential Cd(2+) entry gateway was further confirmed in the HEK-MCD157 cells. The organelle-targeted property of the protein-based Cd(2+) indicator directly reveals the nucleus accumulation phenomena. In summary, a human kidney cell line that stably expresses the FRET-based Cd(2+) indicator Met-cad 1.57 was constructed for reliable and convenient investigations to determine the Cd(2+) concentration within living cells, including the identification of the entry pathway of Cd(2+) and sub-cellular sequestration.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.3362fddf304387b5bf2605318d8ac6
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0065853