Back to Search Start Over

Real-Time Bucket Pose Estimation Based on Deep Neural Network and Registration Using Onboard 3D Sensor

Authors :
Zijing Xu
Lin Bi
Ziyu Zhao
Source :
Sensors, Vol 23, Iss 15, p 6958 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Real-time and accurate bucket pose estimation plays a vital role in improving the intelligence level of mining excavators, as the bucket is a crucial component of the excavator. Existing methods for bucket pose estimation are realized by installing multiple non-visual sensors. However, these sensors suffer from cumulative errors caused by loose connections and short service lives caused by strong vibrations. In this paper, we propose a method for bucket pose estimation based on deep neural network and registration to solve the large registration error problem caused by occlusion. Specifically, we optimize the Point Transformer network for bucket point cloud semantic segmentation, significantly improving the segmentation accuracy. We employ point cloud preprocessing and continuous frame registration to reduce the registration distance and accelerate the Fast Iterative Closest Point algorithm, enabling real-time pose estimation. By achieving precise semantic segmentation and faster registration, we effectively address the problem of intermittent pose estimation caused by occlusion. We collected our own dataset for training and testing, and the experimental results are compared with other relevant studies, validating the accuracy and effectiveness of the proposed method.

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.337226d2de5c401c874e1aa8138b293a
Document Type :
article
Full Text :
https://doi.org/10.3390/s23156958