Back to Search
Start Over
Real-Time Bucket Pose Estimation Based on Deep Neural Network and Registration Using Onboard 3D Sensor
- Source :
- Sensors, Vol 23, Iss 15, p 6958 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Real-time and accurate bucket pose estimation plays a vital role in improving the intelligence level of mining excavators, as the bucket is a crucial component of the excavator. Existing methods for bucket pose estimation are realized by installing multiple non-visual sensors. However, these sensors suffer from cumulative errors caused by loose connections and short service lives caused by strong vibrations. In this paper, we propose a method for bucket pose estimation based on deep neural network and registration to solve the large registration error problem caused by occlusion. Specifically, we optimize the Point Transformer network for bucket point cloud semantic segmentation, significantly improving the segmentation accuracy. We employ point cloud preprocessing and continuous frame registration to reduce the registration distance and accelerate the Fast Iterative Closest Point algorithm, enabling real-time pose estimation. By achieving precise semantic segmentation and faster registration, we effectively address the problem of intermittent pose estimation caused by occlusion. We collected our own dataset for training and testing, and the experimental results are compared with other relevant studies, validating the accuracy and effectiveness of the proposed method.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 23
- Issue :
- 15
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.337226d2de5c401c874e1aa8138b293a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s23156958