Back to Search Start Over

An Efficient Scheme for Determining the Power Loss in Wind-PV Based on Deep Learning

Authors :
Muhyaddin Rawa
Salem Alkhalaf
Lucian Mihet-Popa
Raef Aboelsaud
Tahir Khurshaid
Abdurrahman Shuaibu Hassan
Muhammad Faizan Tahir
Ziad M. Ali
Source :
IEEE Access, Vol 9, Pp 9481-9492 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

Power loss is a bottleneck in every power system and it has been in focus of majority of the researchers and industry. This paper proposes a new method for determining the power loss in wind-solar power system based on deep learning. The main idea of the proposed scheme is to freeze the feature extraction layer of the deep Boltzmann network and deploy deep learning training model as the source model. The sample data with closer distribution with the data under consideration is selected by defining the maximum mean discrepancy contribution coefficient. The power loss calculation model is developed by configuring the deep neural network through the sample data. The deep learning model is deployed to simulate the non-linear mapping relationship between the load data, power supply data, bus voltage data and the grid loss rate during power grid operation. The proposed algorithm is applied to an actual power grid to evaluate its effectiveness. Simulation results show that the proposed algorithm effectively improved the system performance in terms of accuracy, fault tolerance, nonlinear fitting and timeliness as compared with existing schemes.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.3373900e5e414a328bfc94bfcb57346b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.3046687