Back to Search Start Over

The application of graphic language personalized emotion in graphic design

Authors :
Zhenzhen Pan
Hong Pan
Junzhan Zhang
Source :
Heliyon, Vol 10, Iss 9, Pp e30180- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Emotion Recognition is the experience of attitude in graphic language expression and composition. People use both verbal and non-verbal behaviours to communicate their emotions. Visual communication and graphic design are always evolving to meet the demands of an increasingly affluent and culturally conscious populace. When graphic designing works, designers should consider their own opinions about related works from the audience's or customer's standpoint so that the emotion between them can resonate. Hence, this study proposes a personalized emotion recognition framework based on convolutional neural networks (PERF-CNN) to create visual content for graphic design. Graphic designers prioritize the logic of showing objects in interactive designs and use visual hierarchy and page layout approaches to respond to users' demands via typography and imagery. This ensures that the user experience is maximized. This research identifies three tiers of emotional thinking: expressive signal, emotional experience, and emotional infiltration, all of which affect graphic design. This article explores the subject of graphic design language and its ways of emotional recognition, as well as the relationship between graphic images, shapes, and feelings. CNN initially extracted expressive features from the user's face images and the poster's visual information. The clustering process categorizes the poster or advertisement images into positive, negative, and neutral classes. Research and applications of graphic design language benefit from the proposed method's experimental results, demonstrating that it outperforms conventional classification approaches in the dataset. In comparison to other popular models, the experimental results demonstrate that the proposed PERF-CNN model improves each of the following: classification accuracy (97.4 %), interaction ratio (95.6 %), emotion recognition ratio (98.9 %), rate of influence of pattern and colour features (94.4 %), and prediction error rate (6.5 %).

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.338f665ff8be423d99708820aad149cc
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e30180