Back to Search Start Over

Solutions for Schrödinger equations with variable separated type nonlinear terms

Authors :
Xia Su
Chunhua Deng
Source :
AIMS Mathematics, Vol 8, Iss 12, Pp 30487-30500 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

In this paper, we consider the following semilinear Schrödinger equation: $ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = a(x)g(u)&{\mbox{for}}\; x\in \mathbb{R}^{N} ,\\ u(x)\rightarrow0&{\mbox{as}}\; |x|\rightarrow \infty , \end{array} \right. \end{eqnarray*} $ where $ a(x) > 0 $ for all $ \mathbb{R}^{N} $. Under some different superlinear conditions on $ g(u) $, we obtain the existence of solutions for the above problem. In order to regain the compactness of the Sobolev embedding, a competing condition between $ a(x) $ and $ V(x) $ is introduced.

Details

Language :
English
ISSN :
24736988
Volume :
8
Issue :
12
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.3431667d3f874f6fa2e023de0e748ad7
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20231557?viewType=HTML