Back to Search
Start Over
Analysis of static behavior of ion sensitive field effect Transistor for pH measurements
- Source :
- Bulletin of Natural Sciences Research, Vol 12, Iss 1, Pp 21-27 (2022)
- Publication Year :
- 2022
- Publisher :
- University of Priština - Faculty of Natural Sciences and Mathematics, Kosovska Mitrovica, 2022.
-
Abstract
- The Ion-Sensitive Field-Effect Transistor (ISFET) is one of the most popular pH sensors traditionally using to measure hydrogen ion concentration (pH) of the electrolytic solutions. It is developed from Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) by replacing gate electrode with an electrolytic solution to be tested, and a reference metal electrode immersed in that solution. Basic principle of ISFET operation is based on that of standard NMOS structure in conjunction with the insulator-electrolyte capacitor as described in this paper. The site-binding theory (generalized to two kinds of binding sites), together with the Gouy-Chapman-Stern model for the potential profile in the electrolyte, is coupled to the MOS physics. As a result, an approximate analytical model which completely describes static behavior of the ISFET is obtained. The developed description can serve as useful tool for understanding many contemporary biosensors based on original ISFET structure which has broad application in bio-medicine, biological, chemistry and environmental areas.
Details
- Language :
- English, Serbian
- ISSN :
- 27381013
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Bulletin of Natural Sciences Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3493a23de7848309983d73c4e31408c
- Document Type :
- article
- Full Text :
- https://doi.org/10.5937/bnsr12-37850