Back to Search Start Over

Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism.

Authors :
Christopher J Marx
Stephen J Van Dien
Mary E Lidstrom
Source :
PLoS Biology, Vol 3, Iss 2, p e16 (2005)
Publication Year :
2005
Publisher :
Public Library of Science (PLoS), 2005.

Abstract

Genome-scale analysis of predicted metabolic pathways has revealed the common occurrence of apparent redundancy for specific functional units, or metabolic modules. In many cases, mutation analysis does not resolve function, and instead, direct experimental analysis of metabolic flux under changing conditions is necessary. In order to use genome sequences to build models of cellular function, it is important to define function for such apparently redundant systems. Here we describe direct flux measurements to determine the role of redundancy in three modules involved in formaldehyde assimilation and dissimilation in a bacterium growing on methanol. A combination of deuterium and (14)C labeling was used to measure the flux through each of the branches of metabolism for growth on methanol during transitions into and out of methylotrophy. The cells were found to differentially partition formaldehyde among the three modules depending on the flux of methanol into the cell. A dynamic mathematical model demonstrated that the kinetic constants of the enzymes involved are sufficient to account for this phenomenon. We demonstrate the role of redundancy in formaldehyde metabolism and have uncovered a new paradigm for coping with toxic, high-flux metabolic intermediates: a dynamic, interconnected metabolic loop.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
15449173 and 15457885
Volume :
3
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.34e1ceac34344147821269ee9cb2d1fd
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pbio.0030016