Back to Search Start Over

TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization

Authors :
Lifang Zhao
Hongyan Zhang
Xueqing Liu
Shan Xue
Dongfang Chen
Jing Zou
Handong Jiang
Source :
Acta Pharmaceutica Sinica B, Vol 12, Iss 2, Pp 787-800 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and plays a critical role in regulating inflammatory response. Our previous work has shown its role in promoting the progression of non-small cell lung cancer (NSCLC), yet the mechanism remains unclear. Here, using Tgr5-knockout mice, we show that TGR5 is required for M2 polarization of tumor-associated macrophages (TAMs) and suppresses antitumor immunity in NSCLC via involving TAMs-mediated CD8+ T cell suppression. Mechanistically, we demonstrate that TGR5 promotes TAMs into protumorigenic M2-like phenotypes via activating cAMP-STAT3/STAT6 signaling. Induction of cAMP production restores M2-like phenotypes in TGR5-deficient macrophages. In NSCLC tissues from human patients, the expression of TGR5 is associated with the infiltration of TAMs. The co-expression of TGR5 and high TAMs infiltration are associated with the prognosis and overall survival of NSCLC patients. Together, this study provides molecular mechanisms for the protumor function of TGR5 in NSCLC, highlighting its potential as a target for TAMs-centric immunotherapy in NSCLC.

Details

Language :
English
ISSN :
22113835
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Acta Pharmaceutica Sinica B
Publication Type :
Academic Journal
Accession number :
edsdoj.356cef2020ed4c2894bce0d777190c92
Document Type :
article
Full Text :
https://doi.org/10.1016/j.apsb.2021.07.011