Back to Search Start Over

Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing

Authors :
Masahiro Takeoka
Rui-Bo Jin
Masahide Sasaki
Source :
New Journal of Physics, Vol 17, Iss 4, p 043030 (2015)
Publication Year :
2015
Publisher :
IOP Publishing, 2015.

Abstract

In spontaneous parametric down conversion (SPDC) based quantum information processing (QIP) experiments, there is a tradeoff between the coincidence count rates (i.e. the pumping power of the SPDC), which limits the rate of the protocol, and the visibility of the quantum interference, which limits the quality of the protocol. This tradeoff is mainly caused by the multi-photon pair emissions from the SPDCs. In theory, the problem is how to model the experiments without truncating these multi-photon emissions while including practical imperfections. In this paper, we establish a method to theoretically simulate SPDC-based QIPs which fully incorporates the effect of multi-photon emissions and various practical imperfections. The key ingredient in our method is the application of the characteristic function formalism which has been used in continuous variable QIPs. We apply our method to three examples, the Hong–Ou–Mandel interference and the Einstein–Podolsky–Rosen interference experiments, and the concatenated entanglement swapping protocol. For the first two examples, we show that our theoretical results quantitatively agree with the recent experimental results. Also we provide the closed expressions for these interference visibilities with the full multi-photon components and various imperfections. For the last example, we provide the general theoretical form of the concatenated entanglement swapping protocol in our method and show the numerical results up to five concatenations. Our method requires only a small computational resource (a few minutes by a commercially available computer), which was not possible in the previous theoretical approach. Our method will have applications in a wide range of SPDC-based QIP protocols with high accuracy and a reasonable computational resource.

Details

Language :
English
ISSN :
13672630
Volume :
17
Issue :
4
Database :
Directory of Open Access Journals
Journal :
New Journal of Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.36b5477f8d34e54a915538945ccf4c0
Document Type :
article
Full Text :
https://doi.org/10.1088/1367-2630/17/4/043030