Back to Search
Start Over
Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Antiferromagnets (AFMs) have the natural advantages of terahertz spin dynamics and negligible stray fields, thus appealing for use in domain-wall applications. However, their insensitive magneto-electric responses make controlling them in domain-wall devices challenging. Recent research on noncollinear chiral AFMs Mn3X (X = Sn, Ge) enabled us to detect and manipulate their magnetic octupole domain states. Here, we demonstrate a current-driven fast magnetic octupole domain-wall (MODW) motion in Mn3X. The magneto-optical Kerr observation reveals the Néel-like MODW of Mn3Ge can be accelerated up to 750 m s-1 with a current density of only 7.56 × 1010 A m-2 without external magnetic fields. The MODWs show extremely high mobility with a small critical current density. We theoretically extend the spin-torque phenomenology for domain-wall dynamics from collinear to noncollinear magnetic systems. Our study opens a new route for antiferromagnetic domain-wall-based applications.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.36ed40eeca6a49cca0ea0d824dc292c8
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-48440-9