Back to Search Start Over

Bento: a toolkit for subcellular analysis of spatial transcriptomics data

Authors :
Clarence K. Mah
Noorsher Ahmed
Nicole A. Lopez
Dylan C. Lam
Avery Pong
Alexander Monell
Colin Kern
Yuanyuan Han
Gino Prasad
Anthony J. Cesnik
Emma Lundberg
Quan Zhu
Hannah Carter
Gene W. Yeo
Source :
Genome Biology, Vol 25, Iss 1, Pp 1-25 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell–cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene–gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.

Details

Language :
English
ISSN :
1474760X
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.370b90adee9c46aa93c11ebcecb1cb61
Document Type :
article
Full Text :
https://doi.org/10.1186/s13059-024-03217-7