Back to Search Start Over

Graphene Nanoplatelet (GNPs) Doped Carbon Nanofiber (CNF) System: Effect of GNPs on the Graphitic Structure of Creep Stress and Non-Creep Stress Stabilized Polyacrylonitrile (PAN)

Authors :
Annas Bin Ali
Franz Renz
Julian Koch
Christoph Tegenkamp
Ralf Sindelar
Source :
Nanomaterials, Vol 10, Iss 2, p 351 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Improving the graphitic structure in carbon nanofibers (CNFs) is important for exploiting their potential in mechanical, electrical and electrochemical applications. Typically, the synthesis of carbon fibers with a highly graphitized structure demands a high temperature of almost 2500 °C. Furthermore, to achieve an improved graphitic structure, the stabilization of a precursor fiber has to be assisted by the presence of tension in order to enhance the molecular orientation. Keeping this in view, herein we report on the fabrication of graphene nanoplatelets (GNPs) doped carbon nanofibers using electrospinning followed by oxidative stabilization and carbonization. The effect of doping GNPs on the graphitic structure was investigated by carbonizing them at various temperatures (1000 °C, 1200 °C, 1500 °C and 1700 °C). Additionally, a stabilization was achieved with and without constant creep stress (only shrinkage stress) for both pristine and doped precursor nanofibers, which were eventually carbonized at 1700 °C. Our findings reveal that the GNPs doping results in improving the graphitic structure of polyacrylonitrile (PAN). Further, in addition to the templating effect during the nucleation and growth of graphitic crystals, the GNPs encapsulated in the PAN nanofiber matrix act in-situ as micro clamp units performing the anchoring function by preventing the loss of molecular orientation during the stabilization stage, when no external tension is applied to nanofiber mats. The templating effect of the entire graphitization process is reflected by an increased electrical conductivity along the fibers. Simultaneously, the electrical anisotropy is reduced, i.e., the GNPs provide effective pathways with improved conductivity acting like bridges between the nanofibers resulting in an improved conductivity across the fiber direction compared to the pristine PAN system.

Details

Language :
English
ISSN :
20794991
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.37c136cacd3944f3ada4f18105caddef
Document Type :
article
Full Text :
https://doi.org/10.3390/nano10020351