Back to Search Start Over

FBG Sensing Data Motivated Dynamic Feature Assessment of the Complicated CFRP Antenna Beam under Various Vibration Modes

Authors :
Cong Chen
Chao Zhang
Jie Ma
Shi-Zhong He
Jian Chen
Liang Sun
Hua-Ping Wang
Source :
Buildings, Vol 14, Iss 7, p 2249 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Carbon fiber-reinforced polymer (CFRP) components were extensively used and current studies mainly refer to CFRP laminates. The dynamic performance of the complicated CFRP antenna beams is yet to be explored. Therefore, a sensor layout based on fiber Bragg gratings (FBGs) in series was designed to measure the dynamic response of the CFRP antenna beam, and various vibration tests (sweep frequency test, simulated long-life vibration test, shock vibration test, functional vibration test, and constant frequency vibration test) were conducted. The time and frequency domain analysis on FBG sensing signals was performed to check the vibration performance and assess the health condition of this novel CFRP structure. The results indicate that strain values reach a maximum of only 300 µε under different test conditions. The antenna beam exhibited clear vibration patterns, with the first four intrinsic frequencies identified at 44, 94.87, 107.1, and 193.45 Hz. It shows that strain distribution and vibration modes of the antenna beam can be characterized from the sensing data, and the dynamic feature can be much more accurately assessed. The FBG sensors attached on the surface of CFRP antenna beam can accurately and stably measure the dynamic response, which validates that the interfaces between optical fiber sensing elements and CFRP material have excellent interfacial bonding characteristics. The novel CFRP antenna beam exhibits the excellent dynamic performance and stability, offering the replacement of traditional steel antenna beams. The study can finally instruct the development of self-sensing CFRP antenna beams assembled with FBGs in series.

Details

Language :
English
ISSN :
20755309
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Buildings
Publication Type :
Academic Journal
Accession number :
edsdoj.37f53a09f73b462786602c54b2bd50c4
Document Type :
article
Full Text :
https://doi.org/10.3390/buildings14072249