Back to Search Start Over

Wideband tunable perfect absorption of graphene plasmons via attenuated total reflection in Otto prism configuration

Authors :
Nong Jinpeng
Tang Linlong
Lan Guilian
Luo Peng
Guo Caicheng
Yi Juemin
Wei Wei
Source :
Nanophotonics, Vol 9, Iss 3, Pp 645-655 (2020)
Publication Year :
2020
Publisher :
De Gruyter, 2020.

Abstract

A strategy is proposed to achieve wideband tunable perfect plasmonic absorption in graphene nanoribbons by employing attenuated total refraction (ATR) in Otto prism configuration. In this configuration, the Otto prism with a deep-subwavelength dielectric spacer is used to generate tunneling evanescent waves to excite localized plasmons in graphene nanoribbons. The influence of the configuration parameters on the absorption spectra of graphene plasmons is studied systematically, and the key finding is that perfect absorption can be achieved by actively controlling the incident angle of light under ATR conditions, which provides an effective degree of freedom to tune the absorption properties of graphene plasmons. Based on this result, it is further demonstrated that by simultaneously tuning the incident angle and the graphene Fermi energy, the tunable absorption waveband can be significantly enlarged, which is about 3 times wider than the conventional cavity-enhanced configuration. Our proposed strategy to achieve wideband, tunable graphene plasmons could be useful in various infrared plasmonic devices.

Details

Language :
English
ISSN :
21928614
Volume :
9
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Nanophotonics
Publication Type :
Academic Journal
Accession number :
edsdoj.380dd5307c224840ab1a5f542dd3efe4
Document Type :
article
Full Text :
https://doi.org/10.1515/nanoph-2019-0400