Back to Search Start Over

Multimodal hybrid convolutional neural network based brain tumor grade classification

Authors :
A. Rohini
Carol Praveen
Sandeep Kumar Mathivanan
V. Muthukumaran
Saurav Mallik
Mohammed S. Alqahtani
Amal Al-Rasheed
Ben Othman Soufiene
Source :
BMC Bioinformatics, Vol 24, Iss 1, Pp 1-20 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract An abnormal growth or fatty mass of cells in the brain is called a tumor. They can be either healthy (normal) or become cancerous, depending on the structure of their cells. This can result in increased pressure within the cranium, potentially causing damage to the brain or even death. As a result, diagnostic procedures such as computed tomography, magnetic resonance imaging, and positron emission tomography, as well as blood and urine tests, are used to identify brain tumors. However, these methods can be labor-intensive and sometimes yield inaccurate results. Instead of these time-consuming methods, deep learning models are employed because they are less time-consuming, require less expensive equipment, produce more accurate results, and are easy to set up. In this study, we propose a method based on transfer learning, utilizing the pre-trained VGG-19 model. This approach has been enhanced by applying a customized convolutional neural network framework and combining it with pre-processing methods, including normalization and data augmentation. For training and testing, our proposed model used 80% and 20% of the images from the dataset, respectively. Our proposed method achieved remarkable success, with an accuracy rate of 99.43%, a sensitivity of 98.73%, and a specificity of 97.21%. The dataset, sourced from Kaggle for training purposes, consists of 407 images, including 257 depicting brain tumors and 150 without tumors. These models could be utilized to develop clinically useful solutions for identifying brain tumors in CT images based on these outcomes.

Details

Language :
English
ISSN :
14712105
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.3834ba3f4cb7a14b1a59a5a27b40
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-023-05518-3