Back to Search Start Over

Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake

Authors :
Delong Kan
Minyu Tian
Ying Ruan
Hui Han
Source :
Plants, Vol 13, Iss 14, p 1989 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1–64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.

Details

Language :
English
ISSN :
22237747
Volume :
13
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.383dd986b76d444f9443a6740b4561c6
Document Type :
article
Full Text :
https://doi.org/10.3390/plants13141989