Back to Search Start Over

Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis

Authors :
Magdi E. A. Zaki
Sami A. Al-Hussain
Vijay H. Masand
Siddhartha Akasapu
Sumit O. Bajaj
Nahed N. E. El-Sayed
Arabinda Ghosh
Israa Lewaa
Source :
Pharmaceuticals, Vol 14, Iss 4, p 357 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.

Details

Language :
English
ISSN :
14248247
Volume :
14
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Pharmaceuticals
Publication Type :
Academic Journal
Accession number :
edsdoj.397d20ef4e644a36999074121dcf9e4e
Document Type :
article
Full Text :
https://doi.org/10.3390/ph14040357