Back to Search Start Over

A multi-institutional machine learning algorithm for prognosticating facial nerve injury following microsurgical resection of vestibular schwannoma

Authors :
Sabrina M. Heman-Ackah
Rachel Blue
Alexandra E. Quimby
Hussein Abdallah
Elizabeth M. Sweeney
Daksh Chauhan
Tiffany Hwa
Jason Brant
Michael J. Ruckenstein
Douglas C. Bigelow
Christina Jackson
Georgios Zenonos
Paul Gardner
Selena E. Briggs
Yale Cohen
John Y. K. Lee
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Vestibular schwannomas (VS) are the most common tumor of the skull base with available treatment options that carry a risk of iatrogenic injury to the facial nerve, which can significantly impact patients’ quality of life. As facial nerve outcomes remain challenging to prognosticate, we endeavored to utilize machine learning to decipher predictive factors relevant to facial nerve outcomes following microsurgical resection of VS. A database of patient-, tumor- and surgery-specific features was constructed via retrospective chart review of 242 consecutive patients who underwent microsurgical resection of VS over a 7-year study period. This database was then used to train non-linear supervised machine learning classifiers to predict facial nerve preservation, defined as House-Brackmann (HB) I vs. facial nerve injury, defined as HB II–VI, as determined at 6-month outpatient follow-up. A random forest algorithm demonstrated 90.5% accuracy, 90% sensitivity and 90% specificity in facial nerve injury prognostication. A random variable (rv) was generated by randomly sampling a Gaussian distribution and used as a benchmark to compare the predictiveness of other features. This analysis revealed age, body mass index (BMI), case length and the tumor dimension representing tumor growth towards the brainstem as prognosticators of facial nerve injury. When validated via prospective assessment of facial nerve injury risk, this model demonstrated 84% accuracy. Here, we describe the development of a machine learning algorithm to predict the likelihood of facial nerve injury following microsurgical resection of VS. In addition to serving as a clinically applicable tool, this highlights the potential of machine learning to reveal non-linear relationships between variables which may have clinical value in prognostication of outcomes for high-risk surgical procedures.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.3ac1fc30e385454d890751a414886f3b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-63161-1