Back to Search Start Over

The Hypervelocity Impact Behavior and Energy Absorption Evaluation of Fabric

Authors :
Huadong Xu
Dong Yu
Jiaxin Cui
Zhixin Shi
Di Song
Changqing Miao
Source :
Polymers, Vol 15, Iss 6, p 1547 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In this work, the mechanical behavior and energy absorption characteristics of flexible fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the sample materials for their excellent mechanical properties and applicative prospect in spacecraft shielding. HVI experiments had been conducted with the help of a two-stage light-gas gun facility, wherein Al projectile with 3.97 mm diameter was launched at velocities in the range 4.1~4.3 km/s. Impact conditions and areal density were kept constant for all targets. The microstructural damage morphology of fiber post-impact was characterized using a scanning electron microscope (SEM). Analysis results show that a brittle fracture occurred for Basalt fiber during HVI. On the contrary, the ductile fractures with large-scale plastic deformation and apparent thermal softening/melting of the material had happened on the UHMWPE fiber when subjected to a projectile impact. According to the HVI shielding performance and microstructural damage analysis results, it can be inferred that ductile fractures and thermal softening/melting of the material were the prevailing energy absorption behaviors of UHMWPE fabric, which leads to absorbing more impact energy than Basalt fabric and eventually, contributes the superior shielding performance.

Details

Language :
English
ISSN :
20734360
Volume :
15
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
edsdoj.3ad5983967c4447dba77b9d919f5c164
Document Type :
article
Full Text :
https://doi.org/10.3390/polym15061547