Back to Search Start Over

Ce(III)‐Based Coordination‐Complex‐Based Efficient Radical Scavenger for Exceptional Durability Enhancement of Polymer Application in Proton‐Exchange Membrane Fuel Cells and Organic Photovoltaics

Authors :
Taehyun Kwon
So Hyun Park
Byeong Jo Min
Sungmin Park
Safira Ramadhani
Youngjoon Lim
Seung Soon Jang
Hyangsoo Jeong
Hae Jung Son
Jin Young Kim
Source :
Advanced Energy & Sustainability Research, Vol 3, Iss 7, Pp n/a-n/a (2022)
Publication Year :
2022
Publisher :
Wiley-VCH, 2022.

Abstract

To realize the practical application of energy conversion and storage devices for a sustainable future, improving their durability is critically important. The main problem with their durability is the chemical degradation of the active polymers used as material transport layers, photoactive layers, membranes, etc., for the device functions, mainly caused by detrimental radical species from unwanted side reactions. Introducing additives that scavenge radicals before their attack of the device‐configuring polymers is one of the promising strategies to significantly improve their life. In particular, Ce‐based radical scavengers including free Ce3+ are considered to be highly efficient radical scavengers, with a rapid and regenerative redox reaction. However, those radical scavengers possess detrimental interaction with the active materials in the devices, which hinders charge carrier and material transport for the device function, thereby reducing the device efficiency. Herein, an organometallic complex of Ce3+ is applied, and is coordinated by dipicolinate ligands as a radical scavenger for the chemical stability of polymers employed and durability enhancement in fuel cell and organic photovoltaic (OPV) device applications. Owing to the stabilizing effect of dipicolinate ligands toward Ce3+, disadvantageous interaction between radical scavenger and polymer material is suppressed, which results in the improved device stability without reducing the initial performance.

Details

Language :
English
ISSN :
26999412
Volume :
3
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Advanced Energy & Sustainability Research
Publication Type :
Academic Journal
Accession number :
edsdoj.3adf0e7c3dd7479196164bfac70330be
Document Type :
article
Full Text :
https://doi.org/10.1002/aesr.202200011