Back to Search
Start Over
Sharp two-parameter bounds for the identric mean
- Source :
- Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-8 (2018)
- Publication Year :
- 2018
- Publisher :
- SpringerOpen, 2018.
-
Abstract
- Abstract For t∈[0,1/2] $t\in [0,1/2]$ and s≥1 $s\ge 1$, we consider the two-parameter family of means Qt,s(a,b)=Gs(ta+(1−t)b,(1−t)a+tb)A1−s(a,b), $$ Q_{t,s}(a,b)=G^{s}\bigl(ta+(1-t)b,(1-t)a+tb\bigr)A^{1-s}(a,b), $$ where A and G denote the arithmetic and geometric means. Sharp bounds for the identric mean in terms of Qt,s $Q_{t,s}$ are obtained. Our results generalize and extend bounds due to Chu et al. (Abstr. Appl. Anal. 2011:657935, 2011) and to Wang et al. (Appl. Math. Lett. 25:471–475, 2012).
- Subjects :
- Arithmetic Mean
Geometric Mean
Harmonic Mean
Identric Mean
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 1029242X
- Volume :
- 2018
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Inequalities and Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3b2260fdd24041b0a7e1cdac6cfed499
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13660-018-1917-2