Back to Search Start Over

Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer

Authors :
Tudor Moisoiu
Mihnea P. Dragomir
Stefania D. Iancu
Simon Schallenberg
Giovanni Birolo
Giulio Ferrero
Dan Burghelea
Andrei Stefancu
Ramona G. Cozan
Emilia Licarete
Alessandra Allione
Giuseppe Matullo
Gheorghita Iacob
Zoltán Bálint
Radu I. Badea
Alessio Naccarati
David Horst
Barbara Pardini
Nicolae Leopold
Florin Elec
Source :
Molecular Medicine, Vol 28, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine. Methods Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and between luminal and basal types. Results Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) yielded an Area Under the Curve (AUC) of 0.92 ± 0.06 in discriminating between BC and CTRL, an accuracy which was superior either to miRNAs (AUC = 0.84 ± 0.03) or SERS data (AUC = 0.84 ± 0.05) individually. When evaluating the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC of 0.95 ± 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) individually, although SERS alone performed better in terms of classification accuracy. Conclusion miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged.

Details

Language :
English
ISSN :
10761551 and 15283658
Volume :
28
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Molecular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.3b8ae293048238866012f7c293db5
Document Type :
article
Full Text :
https://doi.org/10.1186/s10020-022-00462-z