Back to Search
Start Over
Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2
- Source :
- Cell Reports, Vol 42, Iss 7, Pp 112693- (2023)
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- Summary: Posttranslational modifications represent a key step in modulating programmed death-1 (PD-1) functions, but the underlying mechanisms remain incompletely defined. Here, we report crosstalk between deglycosylation and ubiquitination in regulating PD-1 stability. We show that the removal of N-linked glycosylation is a prerequisite for efficient PD-1 ubiquitination and degradation. Murine double minute 2 (MDM2) is identified as an E3 ligase of deglycosylated PD-1. In addition, the presence of MDM2 facilitates glycosylated PD-1 interaction with glycosidase NGLY1 and promotes subsequent NGLY1-catalyzed PD-1 deglycosylation. Functionally, we demonstrate that the absence of T cell-specific MDM2 accelerates tumor growth by primarily upregulating PD-1. By stimulating the p53-MDM2 axis, interferon-α (IFN-α) reduces PD-1 levels in T cells, which, in turn, exhibit a synergistic effect on tumor suppression by sensitizing anti-PD-1 immunotherapy. Our study reveals that MDM2 directs PD-1 degradation via a deglycosylation-ubiquitination coupled mechanism and sheds light on a promising strategy to boost cancer immunotherapy by targeting the T cell-specific MDM2-PD-1 regulatory axis.
- Subjects :
- CP: Molecular biology
CP: Cancer
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 22111247
- Volume :
- 42
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3ba19516eb4f48598ec8d504849675ad
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.celrep.2023.112693