Back to Search
Start Over
On an asymptotically log-periodic solution to the graphical curve shortening flow equation
- Source :
- Mathematics in Engineering, Vol 4, Iss 3, Pp 1-14 (2022)
- Publication Year :
- 2022
- Publisher :
- AIMS Press, 2022.
-
Abstract
- With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form $ A\sin \left( \log t\right) +B\cos \left( \log t\right) $ as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha < \beta, \ $we are also able to construct a solution satisfying the oscillation limits $ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $ on any compact subset$ \ K\subset \mathbb{R}. $
Details
- Language :
- English
- ISSN :
- 26403501
- Volume :
- 4
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Mathematics in Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3c04b29568a6463bb5922b17da69fd95
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/mine.2022019?viewType=HTML