Back to Search Start Over

The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source

Authors :
Cali Antolini
Victor Sosa Alfaro
Marco Reinhard
Gourab Chatterjee
Ryan Ribson
Dimosthenis Sokaras
Leland Gee
Takahiro Sato
Patrick L. Kramer
Sumana Laxmi Raj
Brandon Hayes
Pamela Schleissner
Angel T. Garcia-Esparza
Jinkyu Lim
Jeffrey T. Babicz
Alec H. Follmer
Silke Nelson
Matthieu Chollet
Roberto Alonso-Mori
Tim B. van Driel
Source :
Molecules, Vol 29, Iss 10, p 2323 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump–probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.3c12ea1266a84105b3002b43ee1df7d1
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29102323