Back to Search Start Over

Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic

Authors :
Shuo Liu
Chaochao Dun
Qike Jiang
Zhengxi Xuan
Feipeng Yang
Jinghua Guo
Jeffrey J. Urban
Mark T. Swihart
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)Ox, and (NiZr)Ox, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an “encapsulated exsolution” phenomenon observed upon reducing the metastable porous (Ni0.07Al0.93)Ox to create ultra-stable Ni nanoparticles embedded within the walls of porous Al2O3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO2 reforming of methane, maintaining constant 96% CH4 and CO2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3c391a4ecbec462aa4b0563202461bfe
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-45413-w