Back to Search Start Over

RAF dimer inhibition enhances the antitumor activity of MEK inhibitors in K‐RAS mutant tumors

Authors :
Xi Yuan
Zhiyu Tang
Rong Du
Zhan Yao
Shing‐Hu Cheung
Xinwen Zhang
Jing Wei
Yuan Zhao
Yunguang Du
Ye Liu
Xiaoxia Hu
Wenfeng Gong
Yong Liu
Yajuan Gao
Zhiyue Huang
Zongfu Cao
Min Wei
Changyou Zhou
Lai Wang
Neal Rosen
Paul D. Smith
Lusong Luo
Source :
Molecular Oncology, Vol 14, Iss 8, Pp 1833-1849 (2020)
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

The mutation of K‐RAS represents one of the most frequent genetic alterations in cancer. Targeting of downstream effectors of RAS, including of MEK and ERK, has limited clinical success in cancer patients with K‐RAS mutations. The reduced sensitivity of K‐RAS‐mutated cells to certain MEK inhibitors (MEKi) is associated with the feedback phosphorylation of MEK by C‐RAF and with the reactivation of mitogen‐activated protein kinase (MAPK) signaling. Here, we report that the RAF dimer inhibitors lifirafenib (BGB‐283) and compound C show a strong synergistic effect with MEKi, including mirdametinib (PD‐0325901) and selumetinib, in suppressing the proliferation of K‐RAS‐mutated non‐small‐cell lung cancer and colorectal cancer (CRC) cell lines. This synergistic effect was not observed with the B‐RAFV600E selective inhibitor vemurafenib. Our mechanistic analysis revealed that RAF dimer inhibition suppresses RAF‐dependent MEK reactivation and leads to the sustained inhibition of MAPK signaling in K‐RAS‐mutated cells. This synergistic effect was also observed in several K‐RAS mutant mouse xenograft models. A pharmacodynamic analysis supported a role for the synergistic phospho‐ERK blockade in enhancing the antitumor activity observed in the K‐RAS mutant models. These findings support a vertical inhibition strategy in which RAF dimer and MEKi are combined to target K‐RAS‐mutated cancers, and have led to a Phase 1b/2 combination therapy study of lifirafenib and mirdametinib in solid tumor patients with K‐RAS mutations and other MAPK pathway aberrations.

Details

Language :
English
ISSN :
18780261 and 15747891
Volume :
14
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Molecular Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.3c9d127250f544f0b8e196531da074da
Document Type :
article
Full Text :
https://doi.org/10.1002/1878-0261.12698