Back to Search Start Over

Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region

Authors :
Yuyan Zhu
Yang Wang
Xingchen Pang
Yongbo Jiang
Xiaoxian Liu
Qing Li
Zhen Wang
Chunsen Liu
Weida Hu
Peng Zhou
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Cutting-edge mid-wavelength infrared (MWIR) sensing technologies leverage infrared photodetectors, memory units, and computing units to enhance machine vision. Real-time processing and decision-making challenges emerge with the increasing number of intelligent pixels. However, current operations are limited to in-sensor computing capabilities for near-infrared technology, and high-performance MWIR detectors for multi-state switching functions are lacking. Here, we demonstrate a non-volatile MoS2/black phosphorus (BP) heterojunction MWIR photovoltaic detector featuring a semi-floating gate structure design, integrating near- to mid-infrared photodetection, memory and computing (PMC) functionalities. The PMC device exhibits the property of being able to store a stable responsivity, which varies linearly with the stored conductance state. Significantly, device weights (stable responsivity) can be programmed with power consumption as low as 1.8 fJ, and the blackbody peak responsivity can reach 1.68 A/W for the MWIR band. In the simulation of Faster Region with convolution neural network (CNN) based on the FLIR dataset, the PMC hardware responsivity weights can reach 89% mean Average Precision index of the feature extraction network software weights. This MWIR photovoltaic detector, with its versatile functionalities, holds significant promise for applications in advanced infrared object detection and recognition systems.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3ccf03ec9fe4979a48518b8e86b552a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50353-6