Back to Search Start Over

Sound waves for solving the problem of recrystallization in cryopreservation

Authors :
Enrique Alcalá
Laura Encabo
Fatima Barroso
Adriana Puentes
Isabel Risco
Ramon Risco
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Organ biobanking is the pending subject of cryopreservation. Although the problem is multifaceted, advances in recent decades have largely related it to achieving rapid and uniform rewarming of cryopreserved samples. This is a physical challenge largely investigated in past in addition to cryoprotectant toxicity studies, which have also shown a great amount of advancement. This paper presents a proof-of-principle, based on the nematode Caenorhabditis elegans, of a technology capable of performing such a function: high intensity focused ultrasound. Thus, avoiding the problem of recrystallization, this worm, in its adult state, preserved at − $$80\;^\circ{\rm C}$$ 80 ∘ C , has been systematically brought back to life after being heated with High Intensity Focused Ultrasound (HIFU) waves. The great advantage of this technology is that it is scalable; in addition, rewarming can be monitored in real time by MRI thermography and can be controlled by acoustic interferometry. We anticipate that our findings are the starting point for a possible approach to rewarming that can be used for cryopreservation of millimeter scale systems: either alone or in combination with other promising ways of heating, like nanowarming or dielectric heating, the present technology provides new ways of solving the physical aspects of the problem of recrystallization in cryopreservation, opening the door for the long-term storage of larger samples.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.3d132daedd54d88851f281521df71a1
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-34681-z