Back to Search Start Over

Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird

Authors :
Hongran Li
Yan Peng
Yansong Wang
Bryce Summerhays
Xiaohan Shu
Yumary Vasquez
Hannah Vansant
Christy Grenier
Nicolette Gonzalez
Khyati Kansagra
Ryan Cartmill
Edison Ryoiti Sujii
Ling Meng
Xuguo Zhou
Gábor L. Lövei
John J. Obrycki
Arun Sethuraman
Baoping Li
Source :
BMC Biology, Vol 21, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. Results Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. Conclusions Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.

Details

Language :
English
ISSN :
17417007
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.3e1b75c45d84021a35e08573f74885a
Document Type :
article
Full Text :
https://doi.org/10.1186/s12915-023-01638-7