Back to Search Start Over

In Vivo Non-Thermal, Selective Cancer Treatment With High-Frequency Medium-Intensity Focused Ultrasound

Authors :
Yongkui Tang
Leng-Ying Chen
Ailin Zhang
Chun-Peng Liao
Mitchell Eric Gross
Eun Sok Kim
Source :
IEEE Access, Vol 9, Pp 122051-122066 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

Focused ultrasound (FUS) has proven its efficacy in non-invasive, radiation-free cancer treatment. However, the commonly used low-frequency high-intensity focused ultrasound (HIFU) destroys both cancerous and healthy tissues non-specifically through extreme heat and inertial cavitation with low spatial resolution. To address this issue, we evaluate the therapeutic effects of pulsed (60 Hz pulse repetition frequency, 1.45 ms pulse width) high-frequency (20.7 MHz) medium-intensity (spatial-peak pulse-average intensity ISPPA < 279.1 W/cm2, spatial-peak temporal-average intensity ISPTA < 24.3 W/cm2) focused ultrasound (pHFMIFU) for selective cancer treatment without thermal damage and with low risk of inertial cavitation (mechanical index < 0.66), in an in vivo subcutaneous B16F10 melanoma tumor growth model in mice. The pHFMIFU with $104~\mu \text{m}$ focal diameter is generated by a microfabricated self-focusing acoustic transducer (SFAT) with a Fresnel acoustic lens. A three-axis positioning system has been developed for automatic scanning of the transducer to cover a larger treatment volume, while a water-cooling system is custom-built for dissipating non-acoustic heat from the transducer surface. Initial testing revealed that pHFMIFU treatment can be applied to a living animal while maintaining skin temperature under 35.6 °C without damaging normal skin and tissue. After eleven days of treatment with pHFMIFU, the treated tumors were significantly smaller with large areas of necrosis and apoptosis in the treatment field compared to untreated controls. Potential mechanisms of this selective, non-thermal killing effect, as well as possible causes of and solutions to the variation in treatment results, have been analyzed and proposed. The pHFMIFU could potentially be used as a new therapeutic modality for safer cancer treatment especially in critical body regions, due to its cancer-specific effects and high spatial resolution.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.3e3534b49f9c4f15bcb138c297653e9b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3108548