Back to Search Start Over

Finite element model reveals the involvement of cartilage endplate in quasi-static biomechanics of intervertebral disc degeneration

Authors :
Yujun Zhang
Yanli Pan
Xinning Mao
Du He
Liangping Zhang
Wei Cheng
Chengyue Zhu
Hang Zhu
Wei Zhang
HongTing Jin
Hao Pan
Dong Wang
Source :
Heliyon, Vol 10, Iss 18, Pp e37524- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Background and objective: The intrinsic link between the compositional and structural attributes and the biomechanical functionality is evident in intervertebral discs. However, it remains unclear from a biomechanical perspective whether cartilage endplate (CEP) degeneration exacerbates intervertebral disc degeneration. Methods: This study developed and quantitatively validated four biphasic swelling-based finite element models. We then applied four quasi-static tests and simulated daily loading scenarios to examine the effects of CEP degradation. Results: Under free-swelling conditions, short-term responses were prevalent, with CEP performance changes not significantly impacting response proportionality. The creep test results showed the more than 50 % of the strain was attributed to long-term responses. Stress-relaxation testing indicated that all responses increased with disc degeneration, yet CEP degeneration's impact was minimal. Daily load analyses revealed that disc degeneration significantly reduces nucleus pulposus pressure and disc height, whereas CEP degeneration marginally increases nucleus pressure and slightly decreases disc height. Conclusions: Glycosaminoglycan content and CEP permeability are critical to the fluid-dependent viscoelastic response of intervertebral discs. Our findings suggest that CEP contributes to disc degeneration under daily loading conditions.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.3e9ca697531446359848a85e5b874810
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e37524