Back to Search Start Over

LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa

Authors :
Suraj Reddy Rodda
Rakesh Fararoda
Rajashekar Gopalakrishnan
Nidhi Jha
Maxime Réjou-Méchain
Pierre Couteron
Nicolas Barbier
Alonso Alfonso
Ousmane Bako
Patrick Bassama
Debabrata Behera
Pulcherie Bissiengou
Hervé Biyiha
Warren Y. Brockelman
Wirong Chanthorn
Prakash Chauhan
Vinay Kumar Dadhwal
Gilles Dauby
Vincent Deblauwe
Narcis Dongmo
Vincent Droissart
Selvaraj Jeyakumar
Chandra Shekar Jha
Narcisse G. Kandem
John Katembo
Ronald Kougue
Hugo Leblanc
Simon Lewis
Moses Libalah
Maya Manikandan
Olivier Martin-Ducup
Germain Mbock
Hervé Memiaghe
Gislain Mofack
Praveen Mutyala
Ayyappan Narayanan
Anuttara Nathalang
Gilbert Oum Ndjock
Fernandez Ngoula
Rama Rao Nidamanuri
Raphaël Pélissier
Sassan Saatchi
Le Bienfaiteur Sagang
Patrick Salla
Murielle Simo-Droissart
Thomas B. Smith
Bonaventure Sonké
Tariq Stevart
Danièle Tjomb
Donatien Zebaze
Lise Zemagho
Pierre Ploton
Source :
Scientific Data, Vol 11, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth’s carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR).

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20524463
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
edsdoj.3ee02488ffd74698ad35f42978bf1ab3
Document Type :
article
Full Text :
https://doi.org/10.1038/s41597-024-03162-x