Back to Search Start Over

Iterative Learning Control Based Fractional Order PID Controller for Magnetic Levitation System

Authors :
Bushra Hanif
Inam-ul-Hassan Shaikh
Ahsan Ali
Source :
Mehran University Research Journal of Engineering and Technology, Vol 38, Iss 4, Pp 885-900 (2019)
Publication Year :
2019
Publisher :
Mehran University of Engineering and Technology, 2019.

Abstract

Maglev (Magnetic Levitation) systems are an interesting class of systems since they work without any physical contact and are hence frictionless. Due to this attractive property, such systems have the potential for wide range of applications such as maglev trains. Maglev is non-linear due to magnetic field and unstable that suggest the need of stabilizing controller. An appropriate controller is required to levitate the object at desired position. FOPID (Fractional Order Proportional Integral Derivative) controller and ILC (Iterative learning Control) based FOPID controller are designed in this paper for the levitation of metallic ball with desired reference at minimum transient errors. Since maglev is unstable and ILC is used only for stable systems, FOPID controller is used to stabilize the plant. Non-linear interior point optimization method is used to obtain the parameters of FOPID controller. An ILC is used as a feedforward controller in order to improve the response iteratively. P, PD and PID-ILC control laws are used to update the new control input in ILC based FOPID controller. The overall control scheme is therefore a hybrid combination of ILC and FOPID. The effectiveness of proposed technique is analyzed based on performance indices via simulation. ISE (Integral Square Error) and IAE (Integral Absolute Error) is lesser in case of hybrid PID-ILC as compared to simple FOPID controller.

Details

Language :
English
ISSN :
02547821 and 24137219
Volume :
38
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Mehran University Research Journal of Engineering and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.3ee3e7a3e448ba8b235ed9aca9e144
Document Type :
article