Back to Search Start Over

Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction

Authors :
Xiang Zhang
Jingjing Tang
Lingling Wang
Chuan Wang
Lei Chen
Xinqing Chen
Jieshu Qian
Bingcai Pan
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Heterogeneous Fenton reaction represents one of the most reliable technologies to ensure water safety, but is currently challenged by the sluggish Fe(III) reduction, excessive input of chemicals for organic mineralization, and undesirable carbon emission. Current endeavors to improve the catalytic performance of Fenton reaction are mostly focused on how to accelerate Fe(III) reduction, while the pollutant degradation step is habitually overlooked. Here, we report a nanoconfinement strategy by using graphene aerogel (GA) to support UiO-66-NH2-(Zr) binding atomic Fe(III), which alters the carbon transfer route during phenol removal from kinetically favored ring-opening route to thermodynamically favored oligomerization route. GA nanoconfinement favors the Fe(III) reduction by enriching the reductive intermediates and allows much faster phenol removal than the unconfined analog (by 208 times in terms of first-order rate constant) and highly efficient removal of total organic carbon, i.e., 92.2 ± 3.7% versus 3.6 ± 0.3% in 60 min. Moreover, this oligomerization route reduces the oxidant consumption for phenol removal by more than 95% and carbon emission by 77.9%, compared to the mineralization route in homogeneous Fe2++H2O2 system. Our findings may upgrade the regulatory toolkit for Fenton reactions and provide an alternative carbon transfer route for the removal of aqueous pollutants.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3f77df2c5a6d45bca61a7f2bcaee95c6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-45106-4