Back to Search Start Over

Antimicrobial and Anesthetic Niosomal Formulations Based on Amino Acid-Derived Surfactants

Authors :
Martina Romeo
Zakaria Hafidi
Rita Muzzalupo
Ramon Pons
María Teresa García
Elisabetta Mazzotta
Lourdes Pérez
Source :
Molecules, Vol 29, Iss 12, p 2843 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Background: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. Method: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. Results: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. Conclusions: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.3fdac7c4375143f0baffff9d7429142a
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29122843