Back to Search Start Over

Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator

Authors :
Tobias Kromann-Hansen
Eva Louise Lange
Hans Peter Sørensen
Gholamreza Hassanzadeh-Ghassabeh
Mingdong Huang
Jan K. Jensen
Serge Muyldermans
Paul J. Declerck
Elizabeth A. Komives
Peter A. Andreasen
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.409897e4334a4c2c81d516f9a73f9d64
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-03457-7