Back to Search Start Over

Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis

Authors :
Mohamed Amine Ferrag
Othmane Friha
Leandros Maglaras
Helge Janicke
Lei Shu
Source :
IEEE Access, Vol 9, Pp 138509-138542 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

In this article, we present a comprehensive study with an experimental analysis of federated deep learning approaches for cyber security in the Internet of Things (IoT) applications. Specifically, we first provide a review of the federated learning-based security and privacy systems for several types of IoT applications, including, Industrial IoT, Edge Computing, Internet of Drones, Internet of Healthcare Things, Internet of Vehicles, etc. Second, the use of federated learning with blockchain and malware/intrusion detection systems for IoT applications is discussed. Then, we review the vulnerabilities in federated learning-based security and privacy systems. Finally, we provide an experimental analysis of federated deep learning with three deep learning approaches, namely, Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Deep Neural Network (DNN). For each deep learning model, we study the performance of centralized and federated learning under three new real IoT traffic datasets, namely, the Bot-IoT dataset, the MQTTset dataset, and the TON_IoT dataset. The goal of this article is to provide important information on federated deep learning approaches with emerging technologies for cyber security. In addition, it demonstrates that federated deep learning approaches outperform the classic/centralized versions of machine learning (non-federated learning) in assuring the privacy of IoT device data and provide the higher accuracy in detecting attacks.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.411abe2b4cb5b6588a0f0ce4aa29
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3118642