Back to Search Start Over

Anderson critical metal phase in trivial states protected by average magnetic crystalline symmetry

Authors :
Fa-Jie Wang
Zhen-Yu Xiao
Raquel Queiroz
B. Andrei Bernevig
Ady Stern
Zhi-Da Song
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting average C 2z T, m, and C 4z T and show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups $$Pm,P{2}^{{\prime} },P{4}^{{\prime} }$$ P m , P 2 ′ , P 4 ′ , and $$P{6}^{{\prime} }$$ P 6 ′ with and without spin-orbit coupling, most of which can support CMP.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.417866f80a24e71ab9a15cf79fbb9cb
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-47467-2