Back to Search Start Over

Attachment performance of the ectoparasitic seal louse Echinophthirius horridus

Authors :
Anika Preuss
Thies H. Büscher
Insa Herzog
Peter Wohlsein
Kristina Lehnert
Stanislav N. Gorb
Source :
Communications Biology, Vol 7, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Marine mammals host a great variety of parasites, which usually co-evolved in evolutionary arms races. However, little is known about the biology of marine mammal insect parasites, and even less about physical aspects of their life in such a challenging environment. One of 13 insect species that manage to endure long diving periods in the open sea is the seal louse, Echinophthirius horridus, parasitising true seals. Its survival depends on its specialised adaptations for enduring extreme conditions such as hypoxia, temperature changes, hydrostatic pressure, and strong drag forces during host dives. To maintain a grip on the seal fur, the louse’s leg morphology is equipped with modified snap hook claws and soft pad-like structures that enhance friction. Through techniques including CLSM, SEM, and histological staining, we have examined the attachment system’s detailed structure. Remarkably, the seal louse achieves exceptional attachment forces on seal fur, with safety factors (force per body weight) reaching 4500 in average measurements and up to 18000 in peak values, indicating superior attachment performance compared to other insect attachment systems. These findings underscore the louse’s remarkable adaptations for life in a challenging marine environment, shedding light on the relationship between structure and function in extreme ecological niches.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.4203c0df03c147d9baf7ba254109a4b7
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-023-05722-0