Back to Search Start Over

Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance

Authors :
Xiangnan He
Biao Zhang
Qingjiang Liu
Hao Chen
Jianxiang Cheng
Bingcong Jian
Hanlin Yin
Honggeng Li
Ke Duan
Jianwei Zhang
Qi Ge
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Ionogels are promising material candidates for ionotronics due to their excellent ionic conductivity, stretchability, and thermal stability. However, it is challenging to develop 3D printable ionogels with both excellent electrical and mechanical properties. Here, we report a highly conductive and stretchable nanostructured (CSN) ionogel for 3D printing ionotronic sensors. We propose the photopolymerization-induced microphase separation strategy to prepare the CSN ionogels comprising continuous conducting nanochannels intertwined with cross-linked polymeric framework. The resultant CSN ionogels simultaneously achieves high ionic conductivity (over 3 S m−1), high stretchability (over 1500%), low degree of hysteresis (0.4% at 50% strain), wide-temperature-range thermostability (−72 to 250 °C). Moreover, its high compatible with DLP 3D printing enables the fabrication of complex ionogel micro-architectures with high resolution (up to 5 μm), which allows us to manufacture capacitive sensors with superior sensing performances. The proposed CSN ionogel paves an efficient way to manufacture the next-generation capacitive sensors with enhanced performance.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.4248caaf25b44757863143098b271495
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50797-w