Back to Search Start Over

A novel variant c.902C>A (p. A301D) in KCNQ4 associated with non‐syndromic deafness 2A in a Chinese family

Authors :
Lingyan Ren
Jiangfen Wu
Ying Kuang
Kun Chen
Minmin Jiang
Zhaozhen Zhuo
Zuwei Cao
Shengwen Huang
Source :
Molecular Genetics & Genomic Medicine, Vol 12, Iss 7, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Background Deafness autosomal dominant 2A (DFNA2A) is related to non‐syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage‐Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non‐syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene. Methods The whole‐exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild‐type KCNQ4 protein and its variant were then performed. In addition, voltage‐gated channel activity of the wild‐type KCNQ4 protein and its variant were tested using whole‐cell patch clamp. Results It was observed that the proband had inherited autosomal dominant, non‐syndromic sensorineural hearing loss as a trait. A novel co‐segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine‐to‐aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole‐cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage‐gated channel activity. Conclusion In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.

Details

Language :
English
ISSN :
23249269
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Molecular Genetics & Genomic Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.427a037bafdf421794548d84f047dcab
Document Type :
article
Full Text :
https://doi.org/10.1002/mgg3.2446