Back to Search Start Over

Epirubicin induces cardiotoxicity through disrupting ATP6V0A2-dependent lysosomal acidification and triggering ferroptosis in cardiomyocytes

Authors :
Mingming Zhang
Xin Wu
Yuting Wen
Zhiquan Li
Fuzhong Chen
Yu Zou
Xiaoyu Dong
Xinjian Liu
Junhong Wang
Source :
Cell Death Discovery, Vol 10, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Epirubicin (EPI) is effective in the treatment of malignant cancers, but its application is limited by life-threatening cardiotoxicity. Iron homeostasis disturbance has been implicated in anthracycline induced cardiotoxicity (AIC), and ferroptosis is involved in AIC which dependent upon intracellular iron. However, the role and exact mechanisms of ferroptosis in the pathogenesis of epirubicin-induced cardiotoxicity (EIC) remain elusive. In this study, we aimed to investigate mechanisms underlying ferroptosis-driven EIC. Epirubicin triggered ferroptosis both in vivo and in cultured cardiomyocytes, and pretreatment with ferroptosis inhibitor, Ferrostatin-1(Fer-1) alleviates EIC. Microarray analysis was performed to screen for potential molecules involved in EIC in neonatal primary mouse ventricular cardiomyocytes (NMVMs). We found that the transcript level of ATP6V0A2, a subunit of vacuolar ATPase (V-ATPase), was significantly downregulated when NMVMs were subjected to EPI, which was verified in vivo and in vitro as measured by real time quantitative reverse transcription PCR (qRT-PCR) and immunoblotting. Intriguingly, overexpression of ATP6V0A2 effectively decreased excessive oxidative stress and lipid-peroxidation accumulation, thereby inhibiting ferroptosis and protecting cardiomyocytes against EIC, as evidenced by functional, enzymatic, and morphological changes. Mechanistically, forced expression of ATP6V0A2 restored lysosomal acidification in EPI-treated cardiomyocytes and protected cardiomyocytes and mice hearts from ferroptosis-driven EIC. In this study, our data elucidate that ferroptosis is involved in EIC, which is ignited by ATP6V0A2-dependent lysosomal acidification dysfunction. Our study provides a new potential therapeutic target for ameliorating EIC.

Details

Language :
English
ISSN :
20587716
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Death Discovery
Publication Type :
Academic Journal
Accession number :
edsdoj.42a14a919f3043a18c394947c335d841
Document Type :
article
Full Text :
https://doi.org/10.1038/s41420-024-02095-z