Back to Search Start Over

HARMer: Cyber-Attacks Automation and Evaluation

Authors :
Simon Yusuf Enoch
Zhibin Huang
Chun Yong Moon
Donghwan Lee
Myung Kil Ahn
Dong Seong Kim
Source :
IEEE Access, Vol 8, Pp 129397-129414 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

With the increasing growth of cyber-attack incidences, it is important to develop innovative and effective techniques to assess and defend networked systems against cyber attacks. One of the well-known techniques for this is performing penetration testing which is carried by a group of security professionals (i.e, red team). Penetration testing is also known to be effective to find existing and new vulnerabilities, however, the quality of security assessment can be depending on the quality of the red team members and their time and devotion to the penetration testing. In this paper, we propose a novel automation framework for cyber-attacks generation named `HARMer' to address the challenges with respect to manual attack execution by the red team. Our novel proposed framework, design, and implementation is based on a scalable graphical security model called Hierarchical Attack Representation Model (HARM). (1) We propose the requirements and the key phases for the automation framework. (2) We propose security metrics-based attack planning strategies along with their algorithms. (3) We conduct experiments in a real enterprise network and Amazon Web Services. The results show how the different phases of the framework interact to model the attackers' operations. This framework will allow security administrators to automatically assess the impact of various threats and attacks in an automated manner.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.42c90c7f836c4aab9c6160e8796c9e7b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.3009748